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ON RESONANCE EXTRACTION AND WAVEFORM FITTING
FOR TRANSIENT DATA; PRONY'S METHOD

INTRODUCTION

The estimation of the resonances (natural frequencies) of a system, from
observation of a noisy response, is an important problem of frequent occurrence
in practical situations. Usually, the number of observations is considerably
greater than the number of resonances, and the task of utilizing these "extra"
data to reduce the errors of estimation must be accomplished without an exces-
sive amount of computational effort or trial-and-error. Accordingly, the
original exact-fit procedure by Prony has to be generalized to a least-squares
approach. In this manner, the amount of data processing is minimized, with
all the nonlinear processing being concentrated in the solution for the roots
of a polynomial.

The purpose of this report is to develop and explain this least-squares
soJution and to show its close connection to linear prediction. The first
section, on Mathematical Details, sets up the problem definition and intro-
duces the terms necessary to interpret recent work by Auton and Van Blaricum (1]
described in the next section. Some important points about the waveform-
fitting technique are explained, and some possible alternative approaches are
mentioned. A more general model is considered in appendix A, and a generaliza-
tion to linear prediction is developed in appendix B, which subsumes forward
prediction, backward prediction, and a weighted Tinear combination in general.
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MATHEMATICAL DETAILS

IDEAL EXPONENTIAL MODEL

Suppose a sequence {gm}g"1 of N points is given exactly by the model*

n n
- - m -
gm-élﬂewhw)=§1%pkfw 0 $m¢g N1, (1)

That is, sequence {gm}g'1 is a sum of n complex exponentials. Without loss
of generality, we presume that all the {Ck} are nonzero for 1 ¢ k < n.

} Consider the error (in linear prediction) of attempting to represent Im
in terms of its past n values; that is, for n ¢ m < N-1, consider linear

prediction error (where a, = -1)

: n n n
i 2 a, .=~ 2 a.

n e
= - m=J
j=1 J °m=J j:O j 2 ck pk

g _ 2 o,
I =0 k=1

n n . n
m-n _ n~Jy = m=np N0 _ -l _ -
51 Cy Mk jzo ( o5 Hy ) k£1 Co by [uy —oapy meomap s peapd,

(2)

where we substituted (1) and interchanged summations. Now we choose the n
Vinear coefficients {aj}? such that

bp -l - - -a =0 for 15ksn. (3)

This requires solution of n linear equations for the n unknowns {aj}?,
presuming that the n quantities {“k}T are known. In fact, the genéral
solution is

a; = (-1)""1 {sum of all possible products of j different u's}

J
: for 1 <jsn; (4a)
k *This can be generalized to include terms like Cum + Dmd“; see appendix A.

2
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that is,
@y =Py 2 oot
a, =-(Uyztibat. . gl tH2bgtHabe* - - iy _1lp)
o = 1"y op (4b)
n 1 2... n.
With this choice of {aj}?, (2) and (3) yield
n
O - jil o5 Gpoj = 0 for nsSmsg N1, (5a)
or
n
9, = jzl “j gm_j for nsmgN-1, (5b)

That is, when sequence {gm}g'1 is generated as a sum of n complex exponentials
according to (1), the sequence value gy can be determined exactly as a forward
linear combination of the previous n values, provided that n < m < N-1. The
restriction of m to this range is due to the fact that gy is presumed unknown
for m < 0 and for m > N-1; thus only the "valid," or available, data are
employed in (2) and (5b).

It is important to observe that the n linear predictive coefficients {a.}?
in (4b) depend on {“k}? but are completely independent of the values of the J
exponential strengths, or "residues," {Ck}q in (1). Also, if the {aj}? were
known instead of the {uk}T, then (3) can be solved for the {uk}? as the n roots
of an n-th order polynomial.

A more general approach to linear prediction is developed in appendix B.
It subsumes the forward prediction (given above), backward prediction, and a
weighted linear combination in general.

ACTUAL MEASURED DATA

Now suppose that some arbitrary data sequence {fm}g'1 has been measured
or is available, and we want to choose the 2n parameters in the exponential

;model (1) such that the error of representing data {fm}g'1 by this model is

mi?imized in some sense. Guided by (5b), we first let linearly predicted
value

R d
——— e e e e —
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f, = E o foog  for nsms N, (6)
j=1
where the linear coefficients {a-}? are to be selected. In particular, we
define the prediction error sequence (called the equation error in [1])

8 = - f = - < N- 7
g, = f, - f =f J§1alf"'3 for nSms N-1. (7)

This is also called Prony's difference equation. We then define the total
squared prediction error as*

~ N1 . N-1 ¢ 2
sszwé~zw(f-zu_). (8)
m=n mom m=n mAm =1 J ™)

where {Qm}g'l are a set of N-n positive weights. E is called the quadratic
error in [1].

Minimization of total squared prediction error £ by choice of coefficients
{aj}? is accomplished by setting

=0 for 1<k<n. (9)

This results in n linear equations in the n unknowns {a }?. We solve these
equations for the {ak}1 that minimize prediction error E.

We must point out an alternative approach to the minimization of E.
One could instead minimize the Chebyshev error; that is, we could choose the
{aj}? in (7) so as to minimize the quantity

n
max _
nsmsN-1 'ifm JEI “J fm-j : (10)

That is, the maximum error in pred1ct1on is minimized. Although this approach
yields non11near equations in the {aJ}l. efficient linear programming techni-

ques exist for this problem. How well this minimax error criterion compares
with the total squared error criterion is not known,

*We are presuming real data sequences here; generalization to complex data is
possible.




TR 6639

Given the values for {ak}l, whether obtained via (9) or (10), we can now
solve (3) for the {ug}]. Some of these latter values may be complex, even
though all the {ak}? are real for real data {fm}g-l; this situation is
treated in [2], p. 380.

Guided now by (1), we next let model data value*

f = z C, pk for 0 $ms N-1. (11)
k=1

Then we define data error sequence {called the true error in [1})

n

en =y~ Fp=f - kfl C, by for 0sms N1 (12)

In a similar fashion to (8), we also define the total squared data error as

. N1 N-1 n m \2
E = Z w e2 = E w (fm - k-z-l ck l-lk) [ (13)

where {w } are a set of N positive weights. To minimize total error E,
we set 0

%€ -0 for 1% isn, (14)

aC.
J

thereby obtaining n linear equations in the n unknowns {C. }? (The quantities
{uk}g are already known at this point; see the discussion preceding (11)).
We solve these n equations for the {C } that minimize E.

An alternative approach to the m1n1m1zat1on of E is to minimize the

Chebyshev error; that is, choose the {C }? in (12) so as to minimize the
quantity

max f - Z C p
0smsN-1 m =1 KK (15)

*This presumes that all the roots {uk}1 are distinct; if on the other hand,
we had for example, My T Hos then we need C1 T + szul rather than

Cyuy + Coup-

” e EIRS S — o
— T T T ——
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Again, the performance quality of (10) and (15) is not known.

At this point, we have a "fitted" waveform,

n
2 C
k=1

‘ pk for 0sms N-1, (16)
to the original given data sequence {f }g'l. However,.it should be observed

that the fit was obtained via a two-stage sequential procedure. Namely, we
first minimized total prediction error £ to find the linear coefficients

{ak}?, and from them, solved the polynomial of (3) for its roots {uk}l.
(These latter quantities are called the resonances in [1]). Then, with
these known values for {u }", total data error E was minimized, thereby
determining the strengths (re51dues) {C.} ? of each of the known exponential
components {uk}k =1"

Both error definitions, (7) (8) and (12)-(13), utilize and "fit" the

available data sequence {f } but in two different senses, the first via
linear prediction, and the sgcond via an exponential model. The worst non-
linear data processing encountered in this two-stage procedure is the
solution of an n-th order polynomial, (3), for all its roots {uk}T This

sequential procedure will not realize as small an error as direct minimiza-
tion of

N-1 2
o ' (fm - kEI Cy "k) (17)

via simultaneous choice of {Ck}? and {uk}?. However, this latter approach
is highly nonlinear in the {uk}?, and no direct (nonrecursive) solution is

known. Of course, a gradient search on (17) could be employed, using as
starting values, those obtained above via the two-stage sequential procedure.
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SOME RECENT WORK

The source of the following results and comments is the work by Auton
i and Van Blaricum [1]. The solution for the coefficients {aj}? in (9) is

called the reduced or inhomogeneous solution; see [1], vol. I, p. 2-5.
This traditional so1ut1on,unfortunate1y tends to zero as the white
(independent) noise component in {f } N=-1 gets larger. A remedy to this

undesired behavior is _furnished by emp]oying instead, the weakest eigen-
vector of the matr1x QTQ, where Q is the data matrix formed by arranging

the given data {fm} in columns in a partlcular fashion; see (11, vol. I,
p. 2-2. (An equ1va?ent 1nterpretat1on is that QTQ or Q are approximated by
matrices of lower rank, i.e. s1ngular matrices.) It has been found that
the weakest eigenvector of QfQ is less dependent on the absolute noise level .
and can furnish more useful values for the resonances {ug}] than can the
inhomogeneous solution. Physically, the "best" linear preé1ction of a noisy
waveform tends to zero, whereas an eigenvector can maintain all its compo-
nents nonzero, regardless of the absolute noise level. At present, the

j weakest eigenvector solution is judged to be the best of all iterative and

i noniterative methods for estimating the resonances {uk}?; see [1], vol. I,
A 1 p. 2-280

!

! When the number of resonances, n, in (1) is unknown, its determination
t or estimation must be made from the available data {f }0 . If k is the

; true (unknown) number of resonances, and n is the hypothesized number,

\ there are n-k extraneous resonance estimates produced. A maximum likelihood
procedure developed in [1] and applied to the 2 smallest eigenvalues (for
various values of %) has been found to give reasonable estimates of k. An
alternative approach, employing time reversal of the data sequence, seems
to geggrate extraneous resonances, but more study is suggested; see [1], vol. I,
p. 3-26.
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CONCLUSIONS

4 The usual problems associated with Prony's method, regarding sensitivity

i to noise, have been attributed to dense sampling and bias. If both of these
problems are treated properly and the weakest eigenvector is employed,
Prony's method produces excellent estimates of the resonances, even from data

with high noise levels; see [1], vol. I, p. 4-8.

Studies on some of these still-unanswered questions about alternative
procedures for order selection and resonance estimation will continue.
Certainly, further improvements in the procedures and performance will ensue.
Applications to rea) measured data have yet to be made, however; see [1],
vol. I, pp. 5-2 and 5-3.

SR TR =Y
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Appendix A
A MORE GENERAL MODEL
i Instead of (1) of the main text, suppose that sequence value
g = 2 c, p?+ g D, mu" for 0 S msS N-1 (A.1)
m k=1 k 7k k=1 k k '

where p can be larger or smaller than n. Then for ntp < m < N-1, consider
linear prediction error .

n p
- 2 . .= 2 . .
9n h o5 9n-j i Bj 9m-n-j
H n rn s P i
| = - 3 aflsz c, f™I+ I D (mj J] (a0 = -1)
% =0 k=1 k "k k=1 k k [\]
‘ P n m-n-j 4 <y, M=N=J
- 2 B, 2 C p + 3 D (m-n-jp -
j=1 =1 k "k =1 k k
n - n s P s
= 2 C pm 2 a,p J+ 3 B. ¥ n J]
N Y [P B M
P n _;i P —pe
I D pt ( 3 a.(m-j)pkJ + 3 Bj(m-n-j)ukn J]. (A.2)
=1 [j=0 I j=1

The quantities in brackets can be made zero for ntp < m ¢ N-1, by setting

both
n -j p -n-j
$oaspSt 2 Bj Mk =0 for 1sksn (A.3)
j=0 J j=1
and
5 -5, 8 R LI I (A.4)
oo (miu) ¢ 3 Bj(m n-j My =0 for 1SKkSop. .
j=0 ! =1

e+
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This combination constitutes n+p Tinear equations in the n+p unknowns {a }
and {8, }1. a_ = -1. These equations can be put in the form

n+ n+p- .
T T RT R WY e B, =0 for 15kshn,

(A.5)

uw:ﬂ)‘l +...+a npk + ﬂl(ni-l)p +...t ﬁp(n-'-p) =0 for 15KESHp.

(A.6)

A ' So sequence value gy can be determined exactly as a linear combination of ;
its previous n+p values, for ntp < m < N-1. Notice that coefficients {aJ} i

and {8 }p depend on {uk}g (where q = max(n,p)) but not on strengths {C }“

i or {Dk}g See also [3], pp. 174-175.
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Appendix B
EIGENVECTOR GENERALIZATION OF LINEAR PREDICTION

IDEAL MODEL

The starting point is again (1) of the main text. We now generalize (2)
of the main text to the form

n

= . € N- .
e jio o5 9y j for nsmgN-1, (8.1)

where all the {a3}f are arbitrary for the moment. It follows, from substitu-
tion of (1) of the main text in (B-1), that

n n n .
e = 3 a, E c, p™ b= 5 ¢ T PR
mogm0 k=1 KK e KKy I7K
= i c, yo " Z a. p "“J for nsms Nl (B.2)
k1 KK =g K
Now let us set
n n-J n
jio a5 M) T ag e et o by +a =0 for 1sksn, (B.3)

by choice of {aj} Since there are only n equations in SB .3), but n+l
unknowns, we w111 not get a unique solution for the {a, } unless we restrict
them somehow. Also, we must disallow the zero solution:

Observe that if we had used only n coefficients {uJ} n-1 in (B.1), we
would have obtained, instead of (B.3), n equations in n unknowns However,
the only solution to these equations is the zero solution a, = 0 for all j,
which is useless. J

Before we consider the restriction on {a; }0, observe that substituting
(8.3) in (B.2) yields
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n
e = 3 a.g9g _.=0 for ns$mgN-1 (B.4)

m j=0J‘“J

That is, we can find an infinife number of Tinear combinations of n+l1 adja-
cent values of sequence {gm}g' generated via (1) of the main text,

which are identically zero for all possible locations of the (n+l)-long
average within the record of length N.

Now to get back to the solution of (B.3) for the coefficients {a.}
observe that the linear predictive approach considered in (2) et seq.J
of the main text amounts to choosing ag = -1; this results in a unique n
solution for the n linear equations (B.3) in the remaining n unknowns {ajl1,
and is called forward prediction by virtue of form (5b) of the main tex%.
An obvious alternative would be to select op = -1, in which case (B.3) and
(B.4) would yield a unique solution for {aj}g'l, and

n
0’ we

On-n = %%t -1 Ipeper O NS WS N-L (B.5)

That is, we are doing backward linear prediction to obtain the sequence
values. But observe that both of these cases are specializations of the
linear constraint

CA=1 (B.6)
on the coefficients {aj}g, where
- -
[ <o ] %
c o
c= |1, a= |2 (8.7)
L “n L %n

are column matrices. Constraint (B.6) prevents the zero solution, and when
combined with (B.3), gives a unique solution for A. We can normalize the
matrix of constants, C, such that

clc =1 (or K if desired), (8.8)

without loss of generality. Forwapd or backward prediction, respectively, cor-
responds to choosing all the {cj}é equal to zero except for edge elements

Co OF Cp» respectively, equal to'-1. So, generally, we can realize the linear
combination.

B-2
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n

jzo o5 gp-y =0 for nsms Nl (B.9)

subject to {aj}g satisfying the linear constraint (B.6), which guarantees a
nonzero solution. C is any vector satisfying (B.8).

ACTUAL MEASURED DATA

Now consider that measured data {f’m}g'1 are available. Instead of
Tinear prediction (6) of the main text, consider the more general linear
combination (as in (B.1))

n
d = Z a,f _. for nsSmsN-1, (B.10)

where set {aj}g is not yet specified. Define error and data matrices

g 7 [ b
dn fn fn_1 . f0
d f cee f
o= | ™| f= | . R (N-n)x(n+1). (B.11)
| 1 | | fva "N-1-n,
Then (B.10) can be expressed as
D=FA (B.12)

where we used (B.7).

Now we want to minimize the total quadratic error of (B.10), namely,

N-1
N 0'D = ATFTFA (8.13)

m=n

by selection of A, but subject to linear constraint (B.6) on A, which guar-
antees a nonzero solution. C is an arbitrary, yet-unspecified matrix.
Accordingly, we use a Lagrange multiplier 21 and Took for an extremum of

ATS A - 22 CTA, (B.14)
B-3

e et i e e obamaai e eeien -
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where we have defined

S = FIF (n+1)x(n+1) matrix. (B.15)

S is easily seen to be a nonnegative definite matrix; it generally has full
rank when N > 2n. Completing the square in (B.14), we rewrite it as

~1 -1 2z -1
(A-as" ) s(a-as"c)-ac'sc. (B.16)
The extremum is then obviously realized for coefficient matrix

A, = as~Lc. (8.17)

To evaluate A, we have to satisfy the linear constraint (B.6):

T

-1
AC'S C=1, A=?1— : (B.18)

A == - (8.19)

(Thus the best coefficients are proportional to the first column of S'1 for
forward linear prediction, or to the last column for backward linear prediction.)
The corresponding minimum value of the total quadratic error, (B.13), is

T -1 .1
CS Ss C 1
= = (B.20)

SAg = -1 I = - .
«'s™ ¢y s ¢

00

(This denominator reduces to the 0,0 elfment of S'1 for forward linear
prediction, or to the n,n element of S-! for backward linear prediction.)

But this result, (B.20), obviously depends on the particular values
assigned to the constraint vector C in (B.6). The question then arises as
to what constraint vector would yield further reduction of error (B.20). To
determine this, let matrix S, defined in (B.15), have eigenvalue matrix

- 1
Mo

v Ag A e, (B.21)
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and modal (eigenvector) matrix
- -
E= eo el cen en . (8.22)
Then
SE = EA (B.23)
or
Sek =2 e for 0 <k zn. (B.24)

By taking the inverse of (B.23), and pre- and post-multiplying by E, we
obtain

sslg=pl (B.25)
or A
-1 _ -l <
S ek-Ak e for 0 £ksn,

(B.26)

which we will need below. The inverse matrix has the same eigenvectors but
the inverse eigenvalues of S.

Now any n+l column matrix can be expressed in terms of the eigenvectors
of S. In particular, suppose we let

C= go b, e - (B.27)
Recalling normalization (B.8), we have the constraint on the {bk}gz
n T n 2
k,§=0 bkb2 ee, = 50 bK =1, (B.28)

since the eigenvectors {ek}8 are orthonormal. If we substitute (B.27) in
(B.20), the denominator is given by

Ts'c= 3 bob, el s 3 b el Ale
= e e. =
i P2 tS T T PPtk e %

: -t 2 b2/A
$ bbb, A, §,,= .
k.o=0 K2 ke = K Mk

T ——— - =

e G VTN Y Avcian k2 Ao R o e ;.‘nm..»
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where we employed (B.26) and the orthonormality of the eigenvectors. Now
since we want to minimize (B.20), we must maximize (B.29), but subject to
(B.28). Obviously the best choice of {bk}g is given by

b0 =x1, bk =0 for 1sSkg£n, (B.30)

where 1 is the smallest eigenvalue of S; see (B.21). Thus

- . _nn'nT}=
Minimum total quadratic error = C {AOSA0 AO . (B.31)

which is the smallest eigenvalue of S defined in (B.15).

Now we can employ result (B.30) in (B.27) and (B.19) to find the best
coefficient set Aj. MWe have C = + ey, and (B.19) becomes

-1 -1
S e A e
Ag = °© .+ 00 .te,, (8.32)
T-1 T,~1
eo eO eO OeO

where we used (B.26), Thus both the constraint vector and the best linear
weighting of_the data in (B.10) are equal to the weakest eigenvector of the
matrix S = FIF, where F is the data matrix defined in (B.11).

We can now return to (B.3) to solve for the {uk}T, where we use the
components of the weakest eigenvector of S for the {aj}g; that is, we use

o - o '1
) €00
a e
L 3 I 0l i (8.33)
L N e0n

What we have done is to find the best linear constraint such that the total
quadratic error (B.13) is minimized. The end result is the same as if we
had minimized (B.13) directly, subject only to constraint

T no
A'A = %a§=L‘ (8.34)

This latter interpretation corresponds to the best A vector in {n+l)-space,
with its tip on the unit sphere, that minimizes the total quadratic error.

B-6
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